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ABSTRACT 

Early lunar micro-rover missions will have constrained 

mission life and downlink capacity, which limits the data 

volume that is received by ground operators for 

operational decision making. Increasing operational 

autonomy is required to maximize the scientific, 

operational, and economic return to ensure the viability 

and sustainability of lunar and planetary surface 

missions. To enable operational autonomy, Mission 

Control has developed MoonNet, an AI-enabled terrain 

classifier, to perform image segmentation on low-power 

spaceflight computing. The outputs of the image 

segmentation can be used to support data compression, 

downlink prioritization, and automated instrument 

targeting. This paper presents the development and 

deployment of MoonNet for demonstration as part of the 

ispace M1 mission. 

1. INTRODUCTION 

1.1. Challenges in Commercial Lunar Rover Missions 

Early commercial lunar surface missions will be limited 

to one lunar day (14 Earth days), due to the harsh 

environment, and nominal operations at mid/low 

latitudes will likely be 10-12 Earth days. Lander 

payloads, including rovers that relay upon the lander for 

communications relay, must share a constrained 

downlink capacity. For rovers that relay upon direct 

telecommanding, consistent and frequent data is required 

for operational decision making. Delays in receiving data 

result in less operational delays and limit the scientific, 

explorative, and economic outcomes of the rover 

mission. These constraints motivate the need for 

innovative concept of operations and technologies to 

ensure viable rover missions.  

1.2. Mobility and Science Operations 

Several factors necessitate increased autonomy in mobile 

science operations. Early Mars rover operations relied 

upon ground-in-the-loop visual surface characterization 

and subsequent analysis for decision-making over one or 

more tactical cycles [1]. Recent advancements continue 

to push operational autonomy to allow for some 

operations to be conducted without ground-in-the-loop 

[2]. Upcoming Lunar rover missions, however, will have 

reduced latency, shorter lifetimes, along with constrained 

bandwidth. These factors necessitate rapid operational 

decision-making processes with limited data with limited 

time to analyze data, identify features of interest, and 

make science-driven decisions. 

The NASA VIPER rover that will fly to the south polar 

region is a large rover (~300kg) but will have a 

constrained direct-to-Earth communications channel of 

230 kbps [3]. Small-scale commercial Lunar rovers will 

also be constrained; payloads, including micro rovers on 

Astrobotic’s Mission One will be allocated 10 kbps per 

kg according to standard payload data rate allocation 

advertised in their Payload User Guide (PUG) [4]. As per 

their CubeRover PUG, a 6kg payload will be allocated 60 

kbps [5]. 

Sensors are growing increasingly powerful; however, 

data transfer rates are not yet sufficiently high to 

downlink high volumes of data for near-term operational 

decision making. Intelligent methods for selection, 

compression, and prioritization of science data collected 

by the rover are needed to maximize scientific, 

explorative, and economic return, and to facilitate 

operational decision making. 

The nature of scientific discovery makes onboard 

autonomy compelling. It increases the chances of 

detecting valuable novel/sparse features that may 

otherwise be missed in scenarios that prioritize driving 

and other mission needs. For example, NASA’s 

Opportunity rover drove 600 ft past the Block Island 

meteorite, one of its biggest discoveries, before the 

science team discovered it and decided to drive back to 

investigate it [6]. 

Rover missions will benefit from autonomy in data 

processing and decision making with short duration 

tactical operational cycles and pressure to achieve 

science objectives. MoonNet, an AI-enabled terrain 



classifier developed by Mission Control, advances 

capabilities for lunar applications from its ASAS-

CRATERS (Autonomous Soil Assessment System: 

Contextualizing Rocks, Anomalies and Terrains in 

Exploratory Robotic Science) [7] field study. MoonNet 

enables such capabilities with the goal of maximizing 

scientific return in upcoming missions. 

1.3. State-of-the-Art in Autonomous Perception for 

Planetary Science 

The state-of-the-art in terrain classification leverages 

high performance Convolutional Neural Networks 

(CNNs) that find natural features and complex patterns in 

the image. Soil Property and Object Classification 

(SPOC) [8] has a terrain classifier that uses Fully CNNs 

(FCNNs). SPOC was further extended though Machine 

learning-based Analytics for Automated Rover Systems 

(MAARS), which included automated scientific 

captioning of terrain images [9]. Gonzalez and Iagnemma 

[10] published a comparative analysis of CNNs, Deep 

Neural Networks, and classical algorithms such as 

Support Vector Machines (SVM). These and other works 

have focused on classifying Mars surface images to 

improve autonomy for Mars rovers. Chiodini [11] 

evaluated the CNN Deeplab-v3+ for labeling a voxelized 

stereo pair to differentiate rocks from sand on a semantic 

model of the scene in front of the rover.  

For Lunar applications, terrain classification motivated 

by scientific research has focused on crater detection 

using orbital data. Stepinski et al. and Chung et al. offer 

a review of traditional machine learning techniques, 

including SVMs [12], [13]. Silburt et al. [14] explored 

the use of CNNs to detect craters using a digital elevation 

model merged from Lunar Reconnaissance Orbiter and 

Kaguya data. For the lunar surface, Matthies [15] 

investigated using CNNs for crater detection with 

monocular camera imagery as input to a crater-based 

rover localization.  

Kerner et al. [16], [17] demonstrated the capability to 

detect novel geological features in multispectral images 

of the Martian surface. They show that a spatial-spectral 

error map can enable both accurate classification of 

novelty in multispectral images as well as human-

comprehensible explanations of the detection. Stefanuk 

and Skonieczny [18] demonstrated using variational 

autoencoders for novelty detection in planetary datasets.  

These studies have successfully demonstrated the use of 

deep learning to improve terrain classification of images 

from Mars rover datasets or from a laboratory setting. 

Recent work by Mission Control holistically studied 

terrain classification in a real-time system for a science-

driven rover mission and its implications on mission 

operations [19]. The Mission Control terrain classifier 

was first developed under the CSA-funded Autonomous 

Soil Assessment System (ASAS) [20]. In 2019, it was 

used onboard a rover to classify eight Mars-relevant 

terrain types in real-time at ~15 FPS as the rover drove at 

20cm/s at a high-fidelity analogue site in Iceland, with a 

sample result shown in Figure 1. This study was a part of 

SAND-E (Semi-Autonomous Navigation for Detrital 

Environments), a NASA PSTAR (Planetary Science and 

Technology Through Analog Research) funded project to 

inform Mars2020 operations [19]. 

 
Figure 1: Result from field-testing the deep-learning 

based terrain classifier in Iceland. 

 

ASAS-CRATERS further advanced ASAS to classify 

terrain into pre-determined geological categories and 

detect novel geologic features [7]. ASAS-CRATERS was 

deployed onto a Xiphos Q8 computing hardware, which 

has a similar low-power and low-mass profile as the 

spaceflight-qualified Q7S.  

Modern AI, enabled by recent advances in deep learning, 

has the potential to help space operations to become more 

autonomous, adapt to unexpected changes, synthesize 

data for human analysis, and maximize productivity 

during idle time. Mission Control, as part of a NASA-

funded PSTAR project, has already shown the value of 

deep learning in an analogue planetary exploration 

mission [19]. Section 2 of this paper presents the 

development and early results of MoonNet leading up to 

its planned lunar demonstration.  

1.4.  Overview of Lunar Capability Demonstration 

MoonNet was manifested as a payload onboard the first 

ispace mission M1. Also manifested on M1 was the 

Emirates Lunar Mission (ELM) Rashid rover led by the 

Mohammed Bin Rashid Space Centre (MBRSC) [21] 

[22]. MoonNet was intended to classify lunar surface 

features visible in images from Rashid as part of a 

collaboration with ELM. The key objectives were to 

demonstrate MoonNet in flight during the surface 

operations of ELM and to demonstrate an increase in 

performance following in-flight model weights update. 

These objectives were to be achieved by receiving 

images from ELM, ingesting these images into Mission 

Control's deep learning model training pipeline [23] and 



ultimately deploying a retrained version of the MoonNet 

model to the lunar surface retraining the MoonNet model.  

The ELM Rashid rover had two identical navigation 

cameras: CAM-1, a forward-facing navigation camera 

mounted on a mast gimbal, and CAM-2, a rearward-

facing fixed-mounted camera [24]. The received CAM-1 

and CAM-2 images were to be used for retraining 

MoonNet on the ground prior updating the model 

weights.  

MoonNet development began with user needs discussion 

and labelling campaign in March 2022. Model 

development, including augmentation strategy and 

training, was finalized and tested during assembly, 

integration and testing (AIT) in August 2022. MoonNet 

was then launched on the M1 spacecraft on December 

11th, 2022. After M1 entered lunar orbit in late-March 

2023, the MoonNet payload was confirmed to be 

operating nominally making it the world’s first deployed 

deep learning AI in lunar orbit. 

MoonNet was to be the world’s first demonstration of 

deep learning on the lunar surface, a historic milestone 

for space exploration. However, the M1 spacecraft, did 

not successfully soft-land on the lunar surface [22]. 

Despite the unsuccessful landing, there were 

achievements and valuable lessons for operational 

autonomy in the development of MoonNet software and 

its concepts of operation, which are described in the 

following section. 

2. OVERVIEW OF MOONNET DEVELOPMENT  

The ASAS-CRATERS program concluded at the end of 

2021, at which point the knowledge developed over years 

of working on the technology was applied to the task of 

deployment on spaceflight computing hardware for 

demonstration in lunar surface operations. Modification 

of the ASAS-CRATERS models and down selecting a 

single, trained model to become the deployed flight 

model, MoonNet, required thinking about the specific 

requirements of the mission.  

2.1. Science User Needs 

ASAS-CRATERS provided the groundwork user needs 

analysis, with refinement required for the details of the 

particulars of M1. AI Specialists, software engineers, and 

planetary scientists established the user needs of the 

demonstration following best practices for Machine 

Learning model development [25], which resulted in a 

labelling taxonomy to train MoonNet. With input from 

planetary geologists, AI Specialists downselected seven 

class labels for the taxonomy based on the most 

successful classes for the various models that had been 

tested and an understanding of the data available: crater 

interior, crater rim, regolith, rocks, rover tracks, sky, and 

spacecraft.  

2.2. Labelling Campaign 

One of the significant challenges of this demonstration 

was the lack of representative imagery: there were no 

images from the M1 landing site surface at the height of 

the Rashid camera with the specific camera sensor 

available for labelling and training. The difference in 

optics, sensor spectral range, lighting conditions, and 

geologic conditions can impact the performance of the 

neural network. To overcome these challenges, a two-

stage training strategy was adopted starting with images 

from Mission Control’s Moonyard collected for ASAS-

CRATERS and then finetuning on lunar imagery from the 

Chang’E missions [26]. Both datasets were labelled using 

the MoonNet taxonomy on the Labelbox platform. 

Representative examples from Labelbox are shown in the 

following Figure 2: 

 
Figure 2: Examples of a labelled image from Mission 

Control’s Moonyard on the Labelbox platform. 

 

Mission Control AI Specialists performed quality control 

and assurance on the labelled data. There were consistent 

labels applied across rocks, sky, and spacecraft. In areas 

of flat lighting conditions some craters or rocks were 

missed and corrected when possible. Crater rims were not 

clearly distinguishable compared to the Moonyard. In 

several instances, craters received the rock label, this was 

caught on review. The labelling campaign resulted in 

1519 Moonyard images and 275 Chang’E images.  

2.3. Training 

A custom training regimen with specific augmentations 

was developed to increase MoonNet’s performance 

during lunar operations. This included custom aspect 

ratio cropping, image flipping, and colour jitter to match 

the expected concept of operations and properties of 

Rashid CAM-1. Custom data products and metrics were 

used to assess performance, including mean Intersection-



Over-Union, class-based accuracy, and overlays like 

those shown in Figure 3. 

 

 
Figure 3: Input image to MoonNet from the Moonyard 

(top). Output MoonNet prediction (centre) overlaid on 

original image (bottom). 

 

2.4. Deployment to and Testing on Spaceflight 

Computing Hardware 

MoonNet was deployed onto a Xiphos Q7S as a payload 

on M1. The Q7S to listen to the data stream for images 

from CAM-1 for processing with MoonNet. The 

MoonNet software ran entirely on the Q7S ARM Cortex-

A9 600 MHz CPU. The Q7S has 512 MB RAM and a 

power draw of approximately 1 W. The limited 

computational power and memory was another challenge 

of this demonstration, as CNNs are not ordinarily run on 

low-SWaP hardware. The radiation environment on route 

to the lunar surface and during surface operations posed 

an additional challenge [27]. 

 
Figure 4: The Spacefarer AI Deployment Toolkit 

accelerates high-level trained models into production of 

edge devices for space flight applications, moving from 

training to compiling to running the model. 
 



2.5. Ground Segment and MLOps Development 

 
Figure 5:High-level view of Mission Control’s deep 

learning pipeline used to develop and deploy MoonNet 

onboard a Q7S. Image of ispace HAKUTO-R lander 

credit: ispace. 

 
With the challenges of a priori training data and 

computational limitations, it was known that MoonNet as 

first deployed would have limited performance. The 

payload software was developed to permit updates to the 

MoonNet model weights to improve the performance 

based on real data acquired during surface operations. 

There were two opportunities to stage and uplink an 

update of the model weights. The model update strategy, 

a distinguishing feature of MLOps, required Mission 

Control to build the first ground infrastructure and 

workflow required to update an onboard neural network 

during lunar operations. This included the construction of 

a deep learning pipeline for processing, verifying, and 

training on new data [23], as shown in Figure 5. 

Mission Control developed custom software and 

pipelines to support real-time evaluation and assessment 

of MoonNet performance during lunar surface 

operations. This included detailed experimental 

assessments between different model training runs to 

improve MoonNet performance on the flight model 

during the 10-12 days of surface operations through the 

deployment and staging of new models trained on CAM-

1 data. 

Mission Control built an automated validation and 

verification pipeline that ensured proper function and 

performance of the newly trained MoonNet models by 

running comparisons between the high-level training 

algorithms and performance on the in-house Engineering 

Model. This pipeline allowed a robust, reproducible 

staging pipeline for sending verified models to ispace 

during uplink windows.  

Surface operations were planned such that MoonNet 

model would be updated in flight twice to demonstrate 

improved model performance during flight, 

demonstrating the importance of a robust MLOps 

pipeline for production level edge AI applications in 

space.  

2.6. Results 

Mission Control achieved the following Milestones as 

part of this capability demonstration: 

• MoonNet model training and deployment of AI 

model as flight software on flight hardware. 

• Successful AIT of MoonNet with ispace HAKUTO-

R lander and MBRSC Rashid rover flight models 

• Passing final software tests with Mission Control 

payload inside the SpaceX rocket fairing in Florida.  

• Launch on SpaceX Falcon9.  

• Establishing nominal payload operation post-launch.  

• Nominal operations of payload through three months 

of deep space travel, including correct recovery from 

radiation strikes.  

• Contact with payload in lunar orbit, confirming 

nominal operation. 

• Successful final rehearsal of machine learning lunar 

operations pipeline with Spacefarer AI.  

                

                          

         

       

        

         
          

        

     

         

        

         
          

        
       

      
   



3. USE CASES FOR MOONNET IN LUNAR 

ROVER OPERATIONS 

MoonNet itself is an enabling tool for enhancing 

operations and operational autonomy of rover missions. 

This section presents use cases, both demonstrated and 

conceptual, for MoonNet in lunar rover operations. 

3.1. Feature-Based Image Compression 

Figure 6 shows a demonstrated example of one such 

product derived from the MoonNet outputs. Fig. (a) 

shows an input image from the Moonyard containing 

sand, craters, rocks, and the background wall. Science 

users may have mission objectives tied specifically to 

craters and rocks on the lunar surface and so the 

segmentation map prediction is used to generate a smaller 

image product that keeps the high-resolution of these 

features while down sampling the background wall and 

foreground sand, as shown in the output image (b). In 

future missions these kinds of derived data products can 

be constructed onboard and used to maximize the science 

return in limited communications bandwidth scenarios. 

 

 
Figure 6: An example of a derived data product from the 

MoonNet predictions from an input image (a). The output 

prediction is used to selectively down sample certain 

image features to create a smaller image while 

maintaining high fidelity for craters and rocks (b). 

 

3.2. Downlink Prioritization 

An alternative concept is to the segmentation-based 

image compression to assess the features contained 

within an image and to prioritize the downlink of images 

based on desired features. The rover system can collect 

high-quality images at a higher rate than it can downlink 

to ground. Science users may have mission objectives 

that prioritize craters on the lunar surface. Images that 

contain these features can be prioritized for downlinking 

over images that do not. An example is shown in Figure 

7.  

 
Figure 7: An example concept application for derived 

data products. The output prediction is used to select and 

prioritize images that contain desirable features. 

 

3.3. Supporting Instrument Targeting 

MoonNet segmentation outputs can support science users 

in targeting science features of interest for rover missions 

that have additional science instruments that can conduct 

targeted investigations of features, such spectrometers. 

The science user on the ground is presented with the 

MoonNet predictions overlayed onto the base image and 

have the feature classes labeled in a user interface, as 

exampled in Figure 8. The science user can then quickly 

select and communicate the selection to the rover 

operators to perform the targeted investigation.  

 
Figure 8: A mock-up of a conceptual user interface that 

can support processing autonomously identified features 

for tasks such as instrument target requests. 

 



3.4. Enabling Autonomous Targeting 

The advancement of user targeting is to enable onboard 

autonomous instrument targeting. In this use case, the 

MoonNet predictions can be used as an input directly 

onboard the rover to identify a target of interest as pre-

defined by science user needs. The estimated relative 

position of the feature of interest, for example a rock, can 

then translate to mechanical actuation to point the 

instrument, for example a spectrometer, at the science 

feature, and once in position the instrument can acquire 

its measurements, such as with AEGIS (Autonomous 

Exploration for Gathering Increased Science) on Mars 

Science Laboratory [29], as exampled in Figure 9. A 

further advancement is to combine this autonomous 

targeting with downlink prioritization, where the highest 

value science data products are prioritized for downlink 

to the science user. 

 
Figure 9: An example concept application for the derived 

data product. The output prediction is used to target 

instruments onto features of interest to acquire the 

science data without requiring the science user on the 

ground in the loop. 

 
3.5. Terrain Classification Mapping Aggregation 

An initial objective of ASAS was to assess soil properties 

for mobility and aggregate those soil assessments onto a 

map generated by the rover. This concept is further 

extended to aggregate the segmented terrain features and 

science targets onto a mapping product.  

 

4. DISCUSSION AND CONCLUSSIONS 

Mission Control developed demonstrate capabilities with 

an in-flight AI model. Future work will be to deploy 

advanced AI models directly onto a rover system. This 

direct deployment with a rover system will allow Mission 

Control to advance operational autonomy capabilities to 

overcome operational constraints to maximize the 

scientific, operational, and economic return of lunar 

rover missions. Additionally, the AI deployment 

capabilities developed for this demonstration are being 

applied to a variety of domains including Earth 

observation, space domain awareness, and AI-enabled 

robotic arms. 

The development of MoonNet for deployment on low-

power was a major achievement towards enabling CNN-

based autonomy applications in deep space missions.  
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